Skip to the content.

Banking Analytics Dashboard (Power BI)

A Power BI dashboard for analyzing banking customers, cards, and transactions. The goal is to highlight usage patterns, error behavior, credit limits, and track KPIs over time to support decision-making.

⬇️ Download Dashboard (v2025.08)  •  ⬇️ Latest Release


✨ Key Features

🧩 Notable Insights

📹 Overview Page

Bank Analytics - Overview

📹 Cards Page

Bank Analytics - Card

📹 Transaction Page

Bank Analytics - Transaction



📊 Sample DAX Measures

-- Total Transactions
[Total Transactions] = COUNTROWS('transactions_data')
-- Total Customers
[Total Customers] = DISTINCTCOUNT('clients_data'[client_id])
-- Average Credit Score
[Avg Credit Score] = AVERAGE('clients_data'[credit_score])
-- MasterCard Transactions
[MC Transactions] =
CALCULATE(
    [Total Transactions],
    FILTER(ALL('cards_data'), 'cards_data'[card_brand] = "MasterCard")
)
-- Visa
[Visa Transactions] =
CALCULATE(
    [Total Transactions],
    FILTER(ALL('cards_data'), 'cards_data'[card_brand] = "Visa")
)
-- American Express
[American Express Transactions] =
CALCULATE(
    [Total Transactions],
    FILTER(ALL('cards_data'), 'cards_data'[card_brand] = "American Express")
)
-- Discover
[Discover Transactions] =
CALCULATE(
    [Total Transactions],
    FILTER(ALL('cards_data'), 'cards_data'[card_brand] = "Discover")
)
-- Error Rate (Chip = Yes)
[Error Rate by Chip] =
DIVIDE(
    CALCULATE(COUNTROWS('transactions_data'), 'transactions_data'[error_flag] = 1, 'transactions_data'[use_chip] = "Yes"),
    CALCULATE(COUNTROWS('transactions_data'), 'transactions_data'[use_chip] = "Yes")
)
-- Avg Transactions per Customer
[Avg Tx per Customer] = DIVIDE([Total Transactions], [Total Customers])